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Abstract

The first part of this paper introduces an analogue, for one-dimensional, singular, complete
local rings, of Gersten’s injectivity conjecture for discrete valuation rings. Our main theorem
is the verification of this conjecture when the ring is reduced and contains Q, using methods
from cyclic/Hochschild homology and Artin-Rees type results due to A. Krishna.

The second part of the paper describes the relationship between adèle type resolutions
of K-theory on a one-dimensional scheme and more classical questions in K-theory such as
localisation and descent. In particular, we construct a new resolution of sheafified K-theory,
conditionally upon the conjecture.

1 Introduction

Suppose that A is a one-dimensional local ring; letting m denote its maximal ideal, consider the
‘completed K-group’

K̂n(A) := lim←−
r

Kn(A/mr).

These groups appeared first perhaps in work by J. Wagoner [37, 38, 39] for complete discrete
valuation rings, where they were defined in a different, but equivalent, fashion. The following
conjecture is explored in the first part of this paper:

If A is a one-dimensional, complete, Noetherian local ring, then the diagonal map

Kn(A)→ K̂n(A)⊕Kn(FracA)

is injective, where FracA denotes (assuming A is Cohen-Macaualy) the total quotient
ring of A.

In other words, the K-theory of the disk SpecA is determined on the punctured disk together with
all infinitesimal thickenings of the closed point. Our main theorem is that the conjecture is true if
A is reduced and contains Q.

The conjecture is not surprising if A is regular, for then the Gersten conjecture (a theorem in
many cases) predicts already that Kn(A) → Kn(FracA) is injective; of course, it would still be
interesting to have a proof of the conjecture for those discrete valuation rings for which the Gersten
conjecture remains unknown, but that it is not our goal. Rather we are claiming that when A is
singular, the failure of Kn(A) → Kn(FracA) to be injective is captured entirely by the K-theory
of all the quotients A/mr, r ≥ 1, as long as A is complete (or Henselian, as we shall see).

An informative example is provided by taking A to be the completion of the local ring of a
seminormal, rational singularity on a curve over a field, and n = 2. Classical calculations due
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to R. Dennis and M. Krusemeyer [6], C. Weibel [40], and S. Geller [9] show that the kernel of
K2(A) → K2(FracA) is non-zero and that it embeds into K2(A/m2), verifying the conjecture in
this case. See proposition 2.11.

Before turning to the second part of the paper, on global theory, we describe more precisely the
layout of the first part. Section 2 contains the main definitions, various remarks on the conjecture,
and some theoretical tools for passing between complete rings and Henselian ones. It also sum-
marises the main results and provides a counterexample showing that completeness/Henselianess
is essential in the conjecture.

Section 3 is the proof of the main theorem, namely verification of the conjecture when A is
reduced and contains Q (or is truncated polynomials over such a ring). Results and ideas from
two papers by A. Krishna [20, 21], concerning Artin-Rees type properties in Hochschild and cyclic
homology, are absolutely essential. We use the standard comparisons between the K-theory and
cyclic homology of Q-algebras, namely T. Goodwillie’s [12] result on nilpotent extensions and
G. Cortiñas’ proof [4] of the KABI conjecture, and we compare K-groups/cyclic homology groups

of A with those of its normalisation Ã (which is smooth, so its cyclic homology is well understood).
This only works because Krishna’s results imply that K-theory and cyclic homology satisfy excision
when we take the limit over mr, r ≥ 1.

Section 4 contains miscellaneous structural results and examples concerning K̂n(A). When

A has finite residue field, we show that K̂n(A) is a profinite group and we offer two alternative
homotopy theoretic descriptions of it (the second is only allowed in the mixed characteristic case):

K̂n(A) ∼= πn(holimrK(A/mr)) ∼= πn(K(A)̂). We also apply Moore’s theorem to completely

describe K̂2(O) when O is the ring of integers in a finite extension of Qp. On the other hand, we

show that if A is a discrete valuation ring of residue characteristic zero, then K̂n(A) differs from
Kn of its residue field by a ‘pile of differential forms’.

The second part of the paper focuses on global constructions, reformulating aspects of K-theory
of one-dimensional schemes from an adelic point of view. As motivation, we briefly now review the
usual idèles1 from a geometric perspective: given a one-dimensional (Noetherian, and temporarily
regular for simplicity) scheme X, let ∏′

x∈X0

F×x

be the restricted product of the unit groups of the fractions of Ox := ÔX,x, for x ∈ X0; this is the
familiar ring of (finite) idèles if X is the spectrum of the ring of integers of a number field. It is
not hard to check that the cohomology of the complex (which is the reduced complex attached to
a simplicial group)

0 −→
∏
x

O×x ⊕K(X)× −→
∏′

x

F×x −→ 0 (†)

is precisely H∗(X,Gm). In the second part of the paper we extend this result to higher degree
K-theory, in such a way that the local factors of the adelic complex are the completed K-groups
studied in the first part; the main result is theorem 6.5. However, the journey is as important as
the final result, as we will explain in the following summary.

Section 5 starts by describing the general theory of (incomplete) adèles on a curve X for an
arbitrary sheaf F on abelian groups on XZar; this is by no means new, but I do not know of any
reference. In particular, we carefully define our ‘restricted product’ notation

∏′
.

1There is a vague convention to use the word ‘adèles’ for additive type objects, and ‘idèles’ for multiplicative
type ones; but this is so badly defined that we will prefer to speak of adèles for anything other than the original
group of idèles.
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Sections 5.2 and 5.3 were inspired by calculations in C. Weibel’s paper [42], in which truncations
of adèles for the sheaf Kn (= Zariski sheafification of Kn) already appear. We derive a long exact
Mayer-Vietoris sequence

· · · → Kn(X)→
∏
x∈X1

Kn(OX,x)⊕
∏
y∈X0

Kn(OX,y)→
∏′

x∈X1

Kn(FracOX,x)→ · · · (‡)

relating the (incomplete) K-theoretic adèles with the K-theory of X itself. This arises from taking
an increasingly fine limit over K-theory localisation sequences (in the style of R. Thomason and
T. Trobaugh [35]). We show that the existence of such a long exact sequence is essentially equivalent
to K-theory satisfying descent on XZar.

These arguments are then repeated, almost verbatim, in section 6 for the Nisnevich topology
on X. In particular, we obtain another long exact Mayer-Vietoris sequence

· · · → Kn(X)→
∏
x∈X1

Kn(OhX,x)⊕
∏
y∈X0

Kn(OX,y)→
∏′

x∈X1

Kn(FracOhX,x)→ · · · ,

where this time the local factors are K-groups of Henselizations; as in the Zariski case, its existence
is equivalent to K-theory satisfying descent on XNis. In section 6.4 it is explained how, in our
local-to-global formulae describing the Nisnevich cohomology of K-theory, one can always work
with completions of the local rings, ÔX,x, rather than their Henselisations (c.f. corollary 2.6).

In section 6.5 we reach our goal, namely theorem 6.5, which is conditional on the aforementioned
conjecture being satisfied for ÔX,x for all x ∈ X1: Firstly, there is a long exact Mayer-Vietoris
sequence, similar to (‡), where the local factors are completed K-groups. Secondly, the cohomology
of a complex like (†), but again with completed K-groups instead, computes H∗Nis(X,Kn).

We finish this introduction by commenting that the longer term goal of this work is to develop
a theory of K-theoretic adèles in arbitrary dimensions in the spirit of A. Parshin and A. Beilinson’s
theory of higher adèles [2, 27]. This would (conjecturally) offer a more functorial alternative to
the Gersten resolution of K-theory; moreover, it would continue to work on singular schemes.
The recursive fashion by which adèles are constructed in higher dimensions forces one to consider
singular, non-reduced schemes in dimension one; moreover, it is expected that functoriality in
higher dimensions will use K. Kato’s residue homomorphisms on completed K-groups [18, 19],
locally representing the pushforward of cycles along proper morphisms. Therefore a preliminary
study of the completed K-groups of one-dimensional, singular local rings was necessary.

The appendix contains summaries of some facts fromK-theory and Hochschild/cyclic homology,
and collects together some classical results on the K-theory of seminormal rings.
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Part I: Local theory

2 An singular analogue of Gersten’s conjecture

Let A be a one-dimensional Noetherian local ring, typically singular (all rings will be Noetherian, so
we will not mention this hypothesis again); its maximal ideal will be denoted m = mA. Throughout
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this paper, we will write FracA to mean

FracA :=
∏
p

Ap,

where p runs over the minimal prime ideals of A; so Spec(FracA) is the punctured spectrum
SpecA \m (we will make some comments about this notation in remark 2.3 below).

Of central interest in this work are the completed K-groups of A, namely

K̂n(A) := lim←−
r

Kn(A/mr).

The reader interested in seeing some examples immediately may wish to glance at section 4. The
conjecture we will explore is the following:

Conjecture 1: If A is a one-dimensional, complete local ring, then the diagonal map

Kn(A)→ K̂n(A)⊕Kn(FracA)

is injective for all n ≥ 0.

We have no counterexamples to this, and will prove various special cases.

Remark 2.1. On occasion A will merely be semi-local, in which case FracA is defined as above,
we use M = MA for the Jacobson radical, and we put K̂n(A) = lim←−rKn(A/Mr). But if A is
a complete semi-local ring then it is a finite product of complete local rings, so the conjecture
trivially extends to the semi-local case.

Remark 2.2. The conjecture is trivial if n = 0 or 1. If A is regular, i.e. a discrete valuation ring,
then Gersten’s conjecture predicts that already Kn(A) → Kn(FracA) is injective. Conversely,
when A is singular the map Kn(A) → Kn(FracA) usually has non-zero kernel (c.f. Geller’s con-

jecture [9]), and conjecture 1 claims that this kernel is ‘small enough’ to inject into K̂n(A) (when
A is complete).

Remark 2.3. Let A be a one-dimensional local ring. Then A is Cohen-Macaulay if and only if
its depth is ≥ 1, which means precisely that m contains at least one non-zero-divisor (which is in
fact equivalent to A not having any embedded point). So, in the strange situation that A is not
Cohen-Macaulay, A coincides with its own total quotient ring Q(A) (:=S−1A where S is the set
of zero-divisors of A). Otherwise pick any non-zero divisor t ∈ A: then V (t) = {m} in SpecA,
and Q(A) = A[t−1] = FracA. In other words, when A is Cohen-Macaulay (e.g., reduced or a local
complete intersection), FracA = Q(A), and this is why we choose to use the friendly notation
Frac. However, in full generality, FracA is the punctured disk SpecA \m. In fact, the philosophy
of the conjecture is the following:

The K-theory of a one-dimensional, complete local ring is determined on its punctured
disk and on all infinitesimal thickenings of the closed point.

We also remark that if the reader wishes only to treat Cohen-Macaulay rings, then R. Thomason
and T. Trobaugh’s [35] theory of localisation and their notion of an ‘isomorphism infinitely near’
which we will use may be replaced respectively by the older approach to localisation for Cartier
divisors, due to D. Quillen and written down by D. Grayson [13], and S-analytic isomorphisms
(e.g. [40]; the key idea goes back to Karoubi [16, App. 5]).
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Remark 2.4. From a homotopy theoretic point of view one may prefer to work with

Ktop
n (A) := πn(holim

r
K(A/mr)),

where K denotes any functorial choice of the K-theory spectrum. This fits into a short exact
sequence

0→ lim←−
r

1Kn+1(A/mr)→ Ktop
n (A)→ K̂n(A)→ 0,

where the term on the left is the first right derived functor of lim←−. Therefore we would obtain

a weaker conjecture if we were to replace K̂n by Ktop
n . However, in each of the following two

diametric cases, we will see that lim←−
1

r
Kn+1(A/mr) = 0 and so Ktop

n (A)
'→ K̂n(A):

(i) A a one-dimensional, reduced, excellent, local ring containing Q (theorem 3.11).

(ii) A a one-dimensional, local ring with finite residue field (indeed, we will note in proposition
4.1 that Kn+1(A/mr) is finite for all r, whence lim←−

1

r
Kn+1(A/mr) = 0).

Although the homotopy-theoretic groups Ktop
n are more convenient for abstract functorial con-

structions, in this paper it does not matter whether we choose to work with K̂n or Ktop
n . For

another homotopy-theoretic approach, see corollary 4.2.

The first aim of this section is to develop tools to pass between Henselian and complete rings,
and then we will state our main results.

Proposition 2.5. Suppose that A is a one-dimensional, excellent, Henselian local ring, and let
n ≥ 0. Then Kn(A)→ Kn(Â) is injective.

Proof. This is a standard Artin Approximation type argument which applies to any functor
A -Algs→ Ab commuting with filtered inductive limits: the argument is as follows.

By Neron-Popescu disingularization [28] (see also [29] and [34]), Â may be written as an filtered
inductive limit of finite-type, smooth A-algebras. Since K-theory commutes with filtered inductive
limits, it is now enough to show that if R is a finite-type, smooth A-algebra which admits an A-
algebra morphism f to Â, then Kn(A) ↪→ Kn(R). But the assumption on the existence of f means
that R/f−1(mÂ) = A/mA; that is, A/mA → R ⊗A A/mA has a section. Since A is Henselian and
R is smooth over A, this lifts to a section of A → R. Hence Kn(A) → Kn(R) has a section, and
thus it is certainly injective.

Corollary 2.6. Suppose that A is a one-dimensional, excellent, Henselian local ring, and let n ≥ 0.
Then the following square of abelian groups is bicartesian and the vertical arrows are injective:

Kn(A) //
� _

��

Kn(FracA)
� _

��

Kn(Â) // Kn(Frac Â)

Proof. The natural map A→ Â is an isomorphism infinitely near m (see the appendix for a review
of this notion) and so there is a resulting long exact Mayer-Vietoris sequence:

· · · → Kn(A)→ Kn(Â)⊕Kn(FracA)→ Kn(Frac Â)→ · · ·

The previous proposition implies that this breaks into short exact sequences, from which everything
follows.
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It follows from the corollary that if A is a one-dimensional, excellent, Henselian local ring, then

Ker(Kn(A)→ K̂n(A)⊕Kn(FracA)) = Ker(Kn(Â)→ K̂n(A)⊕Kn(FracA)).

So Conjecture 1 is equivalent to the seemingly stronger:

Conjecture 1’: If A is a one-dimensional, excellent, Henselian local ring, then the
diagonal map

Kn(A)→ K̂n(A)⊕Kn(FracA)

is injective for all n ≥ 0.

Next we show how the validity of the conjecture yields a long exact Mayer-Vietoris sequence
in K-theory for K̂n(A), analogous to the infinitely near one used in the proof of the previous
corollary. Let A be a one-dimensional, Noetherian local ring; we define the completed K-groups
of FracA, denoted K̂n(FracA), to be given by the following pushout diagram:

Kn(Â) //

��

Kn(Frac Â)

���
�
�

K̂n(A) //___ K̂n(FracA)

So conjecture 1 for Â predicts that this diagram is not only cocartesian, but actually bicartesian.

Remark 2.7. Thanks to corollary 2.6, we could equivalently define K̂n(FracA) as the pushout
of

Kn(Ah) //

��

Kn(FracAh)

K̂n(A)

i.e. We can replace completions by Henselisations everywhere.

Remark 2.8. The problem of whether the group K̂n(FracA) depends only on FracA, and not

on A, is closely related to conjecture 1. But for this reason we will never write K̂n(F ), even if
F = FracA.

Proposition 2.9. Suppose that A is a one-dimensional, Noetherian local ring such that conjecture
1 holds for Â. Then there is a natural long exact Mayer-Vietoris sequence

· · · → Kn(A)→ K̂n(A)⊕Kn(FracA)→ K̂n(FracA)→ · · ·

Proof. Using the long exact Mayer-Vietoris sequence from the proof of corollary 2.6, we may
construct a commutative diagram

· · · // Kn(A)

��

// Kn(Â)⊕Kn(FracA) //

��

Kn(Frac Â) //

��

Kn−1(A) //

��

· · ·

· · · //___ Kn(A) // K̂n(A)⊕Kn(FracA) // K̂n(FracA) //___ Kn−1(A) // · · ·
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(with exact top row) where the dotted arrows are defined by the universal pushout property of
the central square in such a way that the bottom row is a complex and the diagram commutes. A
diagram chase shows that if conjecture 1 is true for Â then the bottom row is actually exact.

Remark 2.10. Continuing remark 2.4, we explain a more homotopy theoretic alternative to
K̂n(FracA).

Let Ktop(A) := holimrK(A/mr), so that Ktop
n (A) = πn(Ktop(A)). Next let Ktop(FracA)

denote the homotopy pushout, in the category of spectra, of the diagram

K(A) //

��

K(FracA)

���
�
�

Ktop(A) //___ Ktop(FracA),

and set Ktop
n (FracA) := πn(Ktop

n (FracA)). In the category of spectra, homotopy pushout and
pullback diagrams coincide, so there is a resulting long exact sequence

· · · → Kn(A)→ Ktop
n (A)⊕Kn(FracA)→ Ktop

n (FracA)→ · · ·

The weaker version of conjecture 1 introduced in remark 2.4 predicts that this breaks into short
exact sequences if A is complete.

It may appear strange that Ktop
n (FracA) was defined directly using A, whereas K̂n(FracA)

was defined via a pushout using the completion Â. However, the map A → Â is an isomorphism
infinitely near m, resulting in a homotopy cartesian square

K(A) //

��

K(FracA)

��

K(Â) // K(Frac Â)

of spectra, whence the natural map Ktop(FracA)→ Ktop(Frac Â) is a weak equivalence. That is,

we are free to replace A by Â when defining Ktop
n (FracA).

Having discussed some theoretical issues surrounding the conjecture, we now turn to results.
Initial faith in the conjecture was inspired by the following special case:

Proposition 2.11. Let A be a one-dimensional, excellent, Henselian local ring. Then conjecture
1’ is true for K2 if A contains a field and is seminormal with rational singularities.

Proof. By the arguments above, it is enough to treat the case that A is actually complete. So,
by the appendix reviewing seminormality, A has the following structural description: it contains
a coefficient field k, and ideals I1, . . . , In, in such a way that A ∼= k ⊕ I1 ⊕ · · · ⊕ In as an abelian
group. Moreover, the maximal ideal of A is m = I1 + · · ·+ In, and each ring k + Ij , which is the
localisation of A away from the prime ideal qj =

∑
i 6=j Ii, is a complete discrete valuation ring

with residue field k.
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Applying Dennis-Krusemeyer’s theorem on the K-theory of rings with such structure (see
theorem B.6), we deduce that there is a resulting isomorphism

K2(A) ∼= K2(k)⊕
n⊕
i=1

Li ⊕
⊕
i<j

(Ii/I
2
i ⊗k Ij/I2j ),

where Li := Ker(K2(k + Ii)→ K2(k)).

Let B = A/m2, and notice that the structural description of A induces a similar description of
B: namely, B ∼= k ⊕ I1/I21 ⊕ · · · ⊕ In/I2n. A second application of Dennis-Krusemeyer’s theorem
yields

K2(B) ∼= K2(k)⊕
n⊕
i=1

L′i ⊕
⊕
i<j

(Ii/I
2
i ⊗k Ij/I2j ),

where L′i := Ker(K2(k + Ii/I
2
i )→ K2(k)).

Therefore, ignoring the Li and L′i factors, K2(A) → K2(B) is an isomorphism. But k + Ii is
a complete discrete valuation ring of equal characteristic, so its K2 embeds into K2 of its field
of fractions, by Quillen’s proof of the Gersten conjecture. In conclusion, K2(A) → K2(A/m2) ⊕
K2(FracA) is injective, which is more than enough to complete the proof.

The following is our main theorem giving evidence for the conjecture:

Theorem 2.12. Let A be a one-dimensional, excellent, Henselian local ring. Then conjecture 1’
is true for all n ≥ 0 if A is reduced and contains Q.

Proof. The proof is deferred until section 3.

The nilpotent extension we can offer on top of the previous theorem is the following:

Theorem 2.13. Let A be a one-dimensional, excellent, Henselian local ring; as in the previous
theorem, suppose that A is reduced and contains Q. Then conjecture 1’ is also true for A[t]/〈te〉
for all n, e ≥ 0.

Proof. Also deferred until section 3.

We finish this section by showing that a property akin to completeness is required for the
conjecture to hold; even a mild singularity causes it to fail for local rings of curves. In fact,
we prove a stronger result which shows moreover that the weaker Ktop

n version of conjecture 1
discussed in remark 2.4 also fails in such a situation:

Proposition 2.14. Let k be any field and let A be the local ring of the singular point on the nodal
curve Y 2 = X2(X + 1) over k. Then the map

K2(A)→ K2(Â)⊕K2(FracA)

is not injective.

(This implies that A fails to satisfy the conjecture since there are natural maps Kn(Â) →
Ktop
n (A)→ K̂n(A).)
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Proof. A is a one-dimensional, local domain, essentially of finite type over k, and it is the proto-
typical example of a seminormal ring with rational singularities. In fact, for most of the proof, we
will work with any A which is a one-dimensional, seminormal local ring, essentially of finite type
over k, with rational singularities. Set F = FracA, and notice that F is a finite product of fields,
hence regular.

Since A has rational singularities, corollary B.5 implies that A is K1-regular, and so there is
an exact sequence (see the appendix for a discussion of KV -theory)

NK2(A)→ K2(A)→ KV2(A)→ 0.

The same holds for Â in place of A, and so we obtain two exact sequences:

0 // ImNK2(A) //

��

K2(A) //

��

KV2(A)

��

// 0

0 // ImNK2(Â) // K2(Â) // KV2(Â) // 0

Moreover, since NK2(A) → NK2(Â) is an isomorphism [40, Corol. 1.4], the left vertical arrow
is surjective. If it is not injective then the proof is finished, because NK2(A) vanishes in K2(F ).
Therefore we may assume it is injective, hence an isomorphism, in which case

Ker(K2(A)→ K2(Â)) = Ker(KV2(A)→ KV2(Â)).

Moreover, since K2(F ) = KV2(F ), we even deduce that

Ker(K2(A)→ K2(Â)⊕K2(F )) = Ker(KV2(A)→ KV2(Â)⊕KV2(F )).

Even more, Quillen’s proof of the Gersten conjecture in the geometric case implies that KV2(Ã)→
KV2(F ) is injective, so the kernels of the previous line, which we wish to show are non-zero, are
the same as

κ := Ker(KV2(A)→ KV2(Â)⊕KV2(Ã)).

Next, lemma B.3 and the subsequent comment imply that we may write Â ∼= k⊕ I1⊕ · · ·⊕ Im,
where each ring k + Ii is a complete discrete valuation ring, and our modification of theorem B.6
for Karoubi-Villameyor theory then implies that

KV∗(Â) ∼= KV∗(k)⊕
m⊕
i=1

KV∗(k + Ii, Ii).

Since
˜̂
A =

∏m
i=1 k + Ii, it is now clear that KV∗(Â)→ KV∗(

˜̂
A) is injective. Therefore

κ = Ker(KV2(A)→ KV2(Ã)).

Next, the GL-fibration

A //

��

Ã

��

k // K := Ã/mA
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produces a long exact Mayer-Vietoris sequence in Karoubi-Villamayer theory

· · · → KV3(Ã)⊕K3(k)→ K3(K)→ KV2(A)→ KV2(Ã)⊕K2(k)→ K2(K)→ · · ·

Since K∗(k) is a direct summand of KV∗(Ã), it follows from this sequence that

κ = Ker(KV2(A)→ KV2(Ã)⊕K2(k))

= Im(K3(K)→ KV2(A))

= K3(K)/ Im(KV3(Ã)→ K3(K))

In conclusion, to show that κ is non-zero, it is necessary and sufficient to prove that K3(Ã) →
K3(K) is not surjective!

So, finally, we let A be the local ring of the nodal singularity as specified in the proposition.
Then B := Ã is the semi-local ring obtained by localising C := k[t] away from two distinct points
x1, x2 ∈ A1

k. Quillen’s localisation theorem implies that there is a short exact sequence

0→ K∗(k)→ K∗(B)→
⊕

x∈A1
k\{x1,x2}

K∗−1(k)→ 0.

However, in the case ∗ = 3, the boundary map
⊕

x 6=x1,x2
∂x : K3(B) →

⊕
x 6=x1,x2

K2(k) is

already surjective when restricted to the symbolic part Ksym
3 (B) of K3(B); this is because K2(k)

is generated by symbols and the tame symbols satisfy

∂x{θ1, θ2, ty} =

{
{θ1, θ2} x = y

0 x 6= y,

if x, y ∈ A1
k, θi ∈ k×, and ty ∈ k[t] is a local parameter at y.

Writing K ind
3 = K3/K

sym
3 as usual, this implies that K ind

3 (k)→ K ind
3 (B) is surjective. So, if

K ind
3 (B)→ K ind

3 (B/MB) = K ind
3 (k)⊕K ind

3 (k)

were surjective (which would certainly follow from the surjectivity we are aiming to disprove),
we would deduce that the diagonal map K ind

3 (k) → K ind
3 (k) ⊕K ind

3 (k) were surjective. However,
K ind

3 (k) is non-zero: for example, its n-torsion is H0(k, µ⊗2n ) for any n not divisible by char k by
[22], and this is non-zero by picking any such n such that µn ⊆ k×. This completes the proof.

3 Calculations in residue characteristic zero and
proofs of theorems 2.12 and 2.13

In this section we prove conjecture 1’ in the case when A is reduced and contains Q, or is trun-
cated polynomials over such a ring, and simultaneously give additional structural results for the
completed K-groups. The proofs are based on comparison theorems with cyclic homology, namely
T. Goodwillie’s [12] result for nilpotent ideals, and G. Cortiñas’ proof [4] of the KABI conjecture.

3.1 Proof of theorem 2.12

The essential technical results and ideas to prove the theorem come from two papers by A. Krishna
[20, 21] on Artin-Rees type properties in Hochschild and cyclic homology. Before describing these
results and sketching our proof, we need to summarise the theory of categories of pro objects.

10



A singular analogue of Gersten’s conjecture

Remark 3.1. Everything we need about categories of pro objects may be found in one of the
standard references, such as the appendix to [1], or [15]. We will use ProAb, the category of pro
abelian groups. We find this to be a convenient and conceptual way to state many of the results,
replacing Krishna’s repeated use of his ‘doubling trick’.

If C is a category, then Pro C, the category of pro objects of C, is the following: an object of
Pro C is a contravariant functor X : I → C, where I is a small cofiltered category (it is fine to
assume that I is a codirected set); this object is usually denoted

“ lim←− ”
i∈I

X(i) or “ lim←− ”
i

X(i),

or by some other suggestive notation. The morphisms in Pro C from “ lim←− ”
i∈I X to “ lim←− ”

j∈J Y (j)
are

HomPro C(“ lim←− ”
i∈I

X, “ lim←− ”
j∈J

Y ) := lim←−
j∈J

lim−→
i∈I

HomC(X(i), Y (j)),

where the right side is a genuine pro-ind limit in the category of sets. Composition is defined in
the obvious way.

There is a fully faithful embedding C → Pro C. Assuming that projective limits exist in C, there
is a realisation functor

Pro C → C, “ lim←− ”
i∈I

X(i) 7→ lim←−
i∈I

X(i),

which is left exact but not right exact (its derived functors are precisely lim←−
1, lim←−

2, etc.), and which
is a left adjoint to the aforementioned embedding.

Suppose that A is an abelian category. Then ProA is an abelian category. Moreover, given a
system of exact sequences

· · · −→ Xn−1(i) −→ Xn(i) −→ Xn+1(i) −→ · · · ,

the formal limit

· · · −→ “ lim←− ”
i∈I

Xn−1(i) −→ “ lim←− ”
i∈I

Xn(i) −→ “ lim←− ”
i∈I

Xn+1(i) −→ · · ·

is an exact sequence in ProA. Of course, we cannot deduce that

· · · −→ lim←−
i∈I

Xn−1(i) −→ lim←−
i∈I

Xn(i) −→ lim←−
i∈I

Xn+1(i) −→ · · ·

is exact in A (assuming that all these projective limits exist in A) because the realisation functor
is not right exact.

Let k be a field of characteristic zero and ` any subfield of k (usually ` = Q for us). Let A

be a reduced ring which is essentially of finite type over k, and B = Ã its normalisation; assume
that B is smooth over k (e.g., this is automatic if A is one-dimensional, which is our only case of
interest). A conducting ideal is any non-zero ideal of B contained inside A.

Krishna proves, using a variety of Artin-Rees type, preliminary results concerning André-
Quillen, Hochschild, and cyclic homology, that if I ⊆ A is any conducting ideal, then the natural
map on double-relative cyclic homology

HC`n(A,B, Ir)→ HC`n(A,B, I)

11
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is zero for r � 0. Thanks to Cortiñas’ proof of the KABI conjecture we can replace HCQ
n by Kn+1

in this result.
Two additional comments should be made at this point: Firstly, in [21], Krishna works under

the assumption that A is actually a domain. However, all his proofs remain valid if A is merely
reduced: B will then be a finite product of smooth domains, which is still smooth, and this is the
important property he uses. Secondly, the required size of s may depend on n, but this is never a
problem.

In terms of pro abelian groups, this means that “ lim←− ”
r≥1Kn(A,B, Ir) = 0 in ProAb. Hence

“ lim←− ”
r≥1

Kn(A, Ir)→ “ lim←− ”
r≥1

Kn(B, Ir)

is an isomorphism, and applying the realisation functor tells us that lim←−r≥1Kn(A, Ir)→ lim←−r≥1Kn(B, Ir)

is an isomorphism of groups. Moreover, the usual splicing argument (in ProAb) gives us a long
exact Mayer-Vietoris sequence in ProAb:

· · ·Kn(A) −→ “ lim←− ”
r≥1

Kn(A/Ir)⊕Kn(B) −→ “ lim←− ”
r≥1

Kn(B/Ir) −→ · · · , (MV)

which we will explain in a moment is a key component of our main proof.
If A is one-dimensional and local, and I is a fixed conducting ideal, then the following three

systems of ideals are all mutually commensurable (i.e., cofinite in one another):

{mrA : r ≥ 1}, {Ir : r ≥ 1}, {J : J a conducting ideal}

So projective limits over over the three systems are the same in this case, and we will pass between
them without mention.

We may now explain the main ideas of the proof of theorem 2.12; let A be a one-dimensional,
reduced, excellent, Henselian local ring containing Q, let F = FracA, and let B = Ã. To prove
that Kn(A) → K̂n(A) ⊕Kn(F ) is injective, it is enough to show that Kn(A) → K̂n(A) ⊕Kn(B)
is injective, since Kn(B) ↪→ Kn(F ) by Quillen’s proof of the Gersten conjecture in this case.
Since the realisation functor lim←− : ProAb → Ab is left exact, it is now enough to show that
Kn(A)→ “ lim←− ”

r
Kn(A/mr)⊕Kn(B) is injective in ProAb. But the sequence (MV) above reduces

this in turn to checking the surjectivity of “ lim←− ”
r
Kn(A/mr) ⊕ Kn(B) → “ lim←− ”

r
Kn(B/Mr) in

ProAb; this surjectivity is essentially the content of lemma 3.2 – remark 3.6. Unfortunately, the
sequence (MV) has only been established for rings essentially of finite type over a field, which A
is not; this difficulty is overcome by reducing to the case that A is the Henselization of such an
essentially finite-type ring and then passing to the limit. It is easier to work with relative K-groups
and treat the residue fields separately.

Now we begin applying and modifying Krishna’s results for our purposes. The essence of K2-
versions of some of the following results are contained in the proof of [20, Lem. 3.3]. We will see
that the top degree part of the Hodge/Adams decomposition behaves completely differently to the
lower degree parts, and we must treat them separately. We begin with the lower degree parts:

Lemma 3.2. Let K/k be an arbitrary extension of fields of characteristic 0, and let e ≥ 0. For
any 1 ≤ i < n, the natural map

H̃C
(i)

n (K[t]/〈t2e〉)→ H̃C
(i)

n (K[t]/〈te〉)

of reduced cyclic homology groups (with respect to k) is zero.

12
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Proof. For the sake of brevity, write Br = k[t]/〈tr〉 for any r. All Hochschild and cyclic homologies
in this proof are taken with respect to k, so the superscript k will be omitted. The proof will work
whenever K is a Noetherian ring which is geometrically regular over k, for then HH∗(K) ∼= Ω∗K/k,
which is all we need K to satisfy.

For any k-algebra A, we write

HH(<n)
n (A) = HHn(A)/HH(n)

n (A) =

n−1⊕
i=1

HH(i)
n (A)

for the quotient of HHn(A) by the top degree part of its Hodge decomposition. If A = A0⊕A1⊕· · ·
is positively graded then we write H̃Hn(A) = HHn(A)/HHn(A0) for the reduced Hochschild
homology. The obvious conjunction of these notations will be also be used. Our claim in the
statement of the lemma is that

H̃C
(<n)

n (B2e ⊗k K) −→ H̃C
(<n)

n (Be ⊗k K)

is zero.
Let A → A′ be a morphism of positively graded k-algebras; we will prove that the following

conditions are equivalent:

(i) H̃C
(<n)

n (AK)→ H̃C
(<n)

n (A′K) is zero for all n ≥ 0.

(ii) As (i), but replacing HC by HH.

(iii) As (ii), but also replacing AK and A′K by A and A′ respectively.

Firstly, the SBI sequence for the reduced Hochschild and cyclic homology of A breaks into short
exact sequences [23, Thm. 4.1.13]; moreover, the S, B, and I maps respect the Hodge grading in
such a way that we may ignore the top degree [Prop. 4.6.9, op. cit.,]:

0→ H̃C
(<n−1)
n−1 (AK)

B−→ H̃H
(<n)

n (AK)
I−→ H̃C

(<n)

n (AK)→ 0

The equivalence (i)⇔(ii) follows from a trivial induction (to start the induction notice that

HH
(<i)
i = 0 for i = 0, 1).
Next, by the Eilenberg-Zilber theorem,

H̃Hn(AK) =
⊕
p+q=n

H̃Hp(A)⊗k HHq(K),

and this decomposition is known to be compatible with the Hodge decompositions in that H̃H
(i)

p (A)⊗k
HH

(j)
q (K) ⊆ H̃H

(i+j)

n (AK) [Prop. 4.5.14, op. cit.]. But K is a limit of finitely generated separable

field extensions of k, so HHq(K) = HH
(q)
q (K) for all q ≥ 0. Therefore

H̃H
(<n)

n (AK) =
⊕
p+q=n

H̃H
(<p)

p (A)⊗k HHq(K)

It is now evident that H̃H
(<n)

n (AK)→ H̃H
(<n)

n (A′K) is zero for all n ≥ 0 if and only if H̃H
(<n)

n (A)→
H̃H

(<n)

n (A) is zero for all n, which is precisely the equivalence (ii)⇔(iii).

13
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So, we have reduced the lemma to the case K = k, i.e. to proving that

H̃H
(<n)

n (B2e) −→ H̃H
(<n)

n (Be)

is zero for all n ≥ 0. This seems to be a reasonably well-known result which follows from filtration
arguments; in any case it follows from [20, Lem. 2.2].

In the following corollary and subsequent lemma notice that Kn(B/I,M/I) is a relative K-
group for a nilpotent ideal in a Q-algebra, hence is a Q-vector space by C. Weibel [41, 1.5]; so
Kn(B/I,M/I) = Kn(B/I,M/I)Q. Of course, the same applies replacing I by I2.

Corollary 3.3. Let B be a normal, one-dimensional, reduced semi-local ring containing Q. Let
M denote its Jacobson radical and let I ⊂ B be an ideal with radical M. For any 1 ≤ i < n, the
natural map

K(i)
n (B/I2,M/I2)→ K(i)

n (B/I,M/I)

is zero.

Proof. The Goodwillie isomorphismKn(B/I,M/I)
'→ HCn−1(B/I,M/I) respects the Adams/Hodge

decompositions by [3], thus inducing

K(i)
n (B/I,M/I)

'→ HC
(i−1)
n−1 (B/I,M/I)

and similarly for I2 in place of I (here HC = HCQ).
Next notice that B/I ∼=

∏
nBn/IBn, where n varies over the finitely many maximal ideals of

B; for each n, there are compatible isomorphisms Bn/IBn
∼= K[t]/〈te〉, Bn/I

2Bn
∼= K[t]/〈t2e〉,

for some integer e > 0 and some characteristic zero field K (both depending on n). Therefore

HC
(i)
n−1(B/I,M/I) is a finite direct sum of terms of the form

HC
(i−1)
n−1 (K[t]/〈te〉, tK[t]/〈te〉) = H̃C

(i−1)
n−1 (K[t]/〈te〉),

and similarly for I2.
We have reduced the problem to proving that

H̃C
(i−1)
n−1 (K[t]/〈t2e〉)→ H̃C

(i−1)
n−1 (K[t]/〈te〉)

is zero, which is exactly the previous lemma.

Next we analyse the top degree part of the Adams decomposition:

Lemma 3.4. Let B be a semi-local ring containing Q. Let M denote its Jacobson radical and let
I ⊂ B be an ideal with radical M. Then

K(n)
n (B/I,M/I) ⊆ Im(Kn(B,M) −→ Kn(B/I,M/I)).

Proof. Notice that B/I is a finite product of Artinian local rings of residue characteristic zero, so
B/I → B/M splits and therefore

K(n)
n (B/I,M/I) = Ker(K(n)

n (B/I)Q → K(n)
n (B/M)Q).
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Now we use the following classical Nesterenko-Suslin result [26]: if R is a local ring with infinite

residue fields, then K
(n)
n (R)Q ∼= KM

n (R)Q. Although B/I and B/M are not local rings, they are
products of local rings and so Nesterenko-Suslin’s result clearly remains valid. In conclusion,

K(n)
n (B/I,M/I) = Ker(KM

n (B/I)→ KM
n (B/M))⊗Z Q.

Next there is the following standard result concerning Milnor K-theory: If R is a ring and
J ⊆ R is an ideal contained inside its Jacobson radical, then the kernel of KM

n (R)→ KM
n (R/J) is

generated by Steinberg symbols of the form {a1, a2 . . . , an}, where a1 ∈ 1+J and a2, . . . , an ∈ A×.
Indeed, if we let Λ denote the subgroup of KM

n (R) generated by such elements, then it is enough
to check that

KM
n (R/J)→ KM

n (R)/Λ, {a1, . . . , an} 7→ {ã1, . . . , ãn}

is well-defined, where ã ∈ R× denotes an arbitrary lift of a ∈ (R/J)×.

Applying this with R = B/I and J = M/I, and noticing that 1 + M/I is a divisible subgroup

of (B/I)×, we have proved that K
(n)
n (B/I,M/I) is generated by Steinberg symbols of the form

ξ = {a1, a2, . . . , an}, where a1 ∈ 1 +M/I and a2, . . . , an ∈ (B/I)×. Fix such an element ξ, and let

ξ̃ = {ã1, . . . , ãn} be a Steinberg symbol in Kn(B) obtained by taking arbitrary lifts of a1, . . . , an
to B×; then ξ̃ ∈ Ker(Kn(B)→ Kn(B/M). Since

Kn(B,M)→ Ker(Kn(B)→ Kn(B/M))

is surjective, we may further lift ξ̃ to Kn(B,M), and this proves that Kn(B,M)→ Kn(B/I,M/I)

covers K
(n)
n (B/I,M/I).

Corollary 3.5. Let B be a normal, one-dimensional, reduced semi-local ring containing Q. Let
M denote its Jacobson radical and let I ⊂ B be an ideal with radical M. Then

K(n)
n (B/I,M/I) = Im(Kn(B,M) −→ Kn(B/I,M/I)) = Im(Kn(B/Ir,M/Ir) −→ Kn(B/I,M/I))

for any r ≥ 2.

Proof. Immediate from corollary 3.3 and lemma 3.4 (applied to both B and B/Ir).

Remark 3.6. In terms of the pro group language, the previous corollary implies that

Kn(B,M) −→ “ lim←− ”
r

Kn(B/Mr,M/Mr)

is surjective.

The imminent proof of proposition 3.8 will show that this is also true ifB is any one-dimensional,
reduced local ring which is essentially of finite type over a field of characteristic zero.

Remark 3.7. Our main results will follow once we take advantage of a long exact sequence
involving relative K-groups, which we explain in this remark.

Suppose that I ⊆ J ⊆ R are ideals in a ring, and that R/I → R/J splits. Then there is a long
exact sequence of relative K-groups

· · · → Kn(R, I)→ Kn(R/J)→ Kn(R/I, J/I)→ · · · , (†)
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constructed as follows. Consider the long exact sequences for R → R/I, R → R/J , and R/I →
R/J :

· · · // Kn(R, I) //

��

Kn(R) // Kn(R/I)
∂ //

��

· · ·

· · · // Kn(R, J) //

��

Kn(R) //

��

Kn(R/J) // · · ·

· · · // Kn(R/I, J/I)
α // Kn(R/I) // Kn(R/J) // · · ·

Note that the lowest sequence breaks into short exact sequences since R/I → R/J has a section.
From this it is easy to construct (†): the boundary map Kn(R/I, J/I) → Kn−1(R, I) is given by
∂ ◦ α.

In the case n = 2, the following proposition is one of the main results of [20]:

Proposition 3.8. Let A be a one-dimensional, reduced local ring, essentially of finite type over a
field of characteristic zero. Then the natural map

Kn(A,m)→ Kn(A/mr,m/mr)⊕Kn(Ã,M)

is injective for r � 0.

Proof. We apply the previous remark to I ⊆ m ⊆ A and I ⊆ M ⊆ B = Ã and compare the
resulting long exact sequences:

· · · // Kn+1(A/I,m/I) //

(2)

��

Kn(A, I) //

��

Kn(A,m) //

��

Kn(A/I,m/I) //

��

· · ·

· · · // Kn+1(B/I,M/I) // Kn(B, I) // Kn(B,M)
(1) // Kn(B/I,M/I) // · · ·

We take the formal limit over all conducting ideals and make two observations: firstly, remark
3.6 tells us that arrow (1) become surjective in the limit; and secondly, arrow (2) becomes an
isomorphism in the limit thanks to our ProAb interpretation of Krishna’s result on double relative
K-groups (explained after remark 3.1):

· · · // “ lim←− ”
I
Kn+1(A/I,m/I) //

��

“ lim←− ”
I
Kn(A, I) //

∼=
��

Kn(A,m) //

��

“ lim←− ”
I
Kn(A/I,m/I)

��

// · · ·

· · · // // “ lim←− ”
I
Kn+1(B/I,M/I) // “ lim←− ”

I
Kn(B, I) // Kn(B,M) // // “ lim←− ”

I
Kn(B/I,M/I) // · · ·

A simple diagram chase shows that Kn(A,m) → “ lim←− ”
I
Kn(A/I,m/I) is also surjective. So the

16



A singular analogue of Gersten’s conjecture

top and bottom rows break into short exact sequences

0 // “ lim←− ”
I
Kn(A, I) //

∼=
��

Kn(A,m) //

��

“ lim←− ”
I
Kn(A/I,m/I) //

��

0

0 // “ lim←− ”
I
Kn(B, I) // Kn(B,M) // “ lim←− ”

I
Kn(B/I,M/I) // 0

whence the right square in this diagram is bicartesian.
Hence Kn(A,m)→ Kn(B,M)⊕Kn(A/I,m/I) is injective for all sufficiently small conducting

ideals I, which completes the proof since any power of m contains a conducting ideal.

The proposition leads to an interesting refinement of the surjectivity discussed in remark 3.6
away from the top degree part of the Adams decomposition:

Corollary 3.9. With notation as in the proposition, the natural map

K(i)
n (A,m)Q → lim←−

r≥0
K(i)
n (A/mr,m/mr)⊕K(i)

n (Ã,M)Q

is an isomorphism, for 0 ≤ i < n.

Proof. According to corollary 3.3,

“ lim←− ”
I

K(i)
n (B/I,M/I) = 0,

where the formal projective limit is taken over the set of all conducting ideals. Repeating the

previous proof with Kn replaced by K
(i)
n ⊗Q, we arrive at a commutative diagram where the top

row is short exact:

0 // “ lim←− ”
I
K

(i)
n (A, I)Q //

∼=
��

K
(i)
n (A,m)Q //

��

“ lim←− ”
I
K

(i)
n (A/I,m/I) //

��

0

0 // “ lim←− ”
I
K

(i)
n (B, I)Q

∼= // K(i)
n (B,M)Q // 0 // 0

It follows that once that

K(i)
n (A,m)Q → “ lim←− ”

I

K(i)
n (A/I,m/I)⊕K(i)

n (B,M)Q

is an isomorphism, from which the stated claim follows by taking the realisation functor lim←− and
replacing lim←−I by lim←−mr

.

The proposition also allows us to prove a special case of the main theorem (from which the
main theorem itself will easily follow):

Theorem 3.10. Let A be a one-dimensional, reduced local ring, essentially of finite type over a
field of characteristic zero. Then

Kn(Ah)→ K̂n(Ah)⊕Kn(Ãh)

is injective.
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Proof. Let m denote the maximal ideal of A and k = A/m its residue field. Let A′ be a finite,
local étale extension of A with residue field k; then A′ satisfies the conditions of proposition 3.8,
and has maximal ideal mA′ and normalisation Ã′ = A′ ⊗A Ã, so

Kn(A′,mA′)→ Kn(A′/mrA′,mA′/mrA′)⊕Kn(A′ ⊗A Ã,M′)

is injective for r � 0, where M′ is the Jacobson radical of Ã′. But A′/mrA′ = A/mr and
mA′/mrA′ = m/mr, so the central term is Kn(A/mn,m/mn); moreover, the quotient map A/mr →
k is split, so Kn(A/mr,m/mr)→ Kn(A/mr) is (split) injective. In conclusion,

Kn(A′,mA′)→ K̂n(A)⊕Kn(A′ ⊗A Ã,M′)

is injective.
Since Ah = lim−→A′, with A′ running over all finite, local étale extensions of A with residue field

k, we may pass to the limit to deduce that

Kn(Ah,mAh)→ K̂n(A)⊕Kn(Ãh,Mh) (†)

is injective, where we write Mh for the Jacobson radical of Ãh.

Next notice that Ãh is a Henselian, one-dimensional, reduced, normal local ring; hence it is a

finite product of Henselian discrete valuation rings, and therefore the quotient map Ãh → Ãh/Mh

actually splits. So K∗(Ãh,M
h)→ K∗(Ãh) is (split) injective and thus we arrive at a commutative

diagram with exact rows:

0 // Kn(Ah,mAh) //

��

Kn(Ah) //

��

Kn(k)

��

// 0

0 // Kn(Ãh,Mh) // Kn(Ãh) // Kn(Ãh/Mh) // 0

A quick diagram chase using this commutative diagram and the injectivity of (†) reveals that if

ξ ∈ Kn(Ah) dies in both K̂n(A) (whence it dies in Kn(k)) and Kn(Ãh), then ξ = 0. This completes
the proof.

The aim of this section, namely the proof of theorem 2.12, easily follows from the previous
theorem using standard manipulations:

Proof of theorem 2.12. Let A be a one-dimensional, reduced, excellent, Henselian local ring con-
taining Q. Let k be the residue field of A. After picking a coefficient field for Â and generators
for its maximal ideal, it is clear how to construct a one-dimensional, local subring A◦ ⊆ Â which
is essentially of finite-type over k and which satisfies Â◦ = Â. The ring A◦ is reduced because Â
is (since A is excellent).

According to corollary 2.6 and the subsequent comments, conjecture 1′ is equivalent for the
rings A, Â = Â◦, and Ah◦ . The previous theorem proves the conjecture for Ah◦ , and this completes
the proof.

We finish this section by noting another application of the type of surjectivity which appeared
in remark 3.6:
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Theorem 3.11. Let A be a one-dimensional, reduced, excellent, local ring containing Q. Then
the natural map

Ktop
n (A)→ K̂n(A)

is an isomorphism (see remark 2.4).

Proof. Since Ktop
n (A) and K̂n(A) depends only on the quotients A/mr, for r ≥ 1, we may argue

as in the proof of theorem 2.12 above and replace A first by its completion and then by a smaller
subring; this reduces the problem to the case when A contains a coefficient field k over which it is
essentially of finite type. In the remainder of the proof we work with such a ring A.

We noted during the proof of proposition 3.8 that

Kn(A,m)→ “ lim←− ”
r

Kn(A/mr,m/mr) (†)

is surjective in ProAb. Applying the realisation functor lim←− : ProAb → Ab yields a short exact
sequence

· · · → lim←−
r

1Kn(A,m)→ lim←−
r

1Kn(A/mr,m/mr)→ lim←−
r

2κr → . . . ,

where κr = Ker(Kn(A,m) → Kn(A/mr,m/mr)). But it is well-known that lim←−
2 of a countable

system of abelian groups automatically vanishes, and lim←−
1 of a constant system of groups certainly

vanishes, so this shows that
lim←−
r

1Kn(A/mr,m/mr) = 0.

Applying the same type of argument to the exact sequence

0→ “ lim←− ”
r

Kn(A/mr,m/mr)→ “ lim←− ”
r

Kn(A/mr)→ Kn(k)→ 0

shows that lim←−
1

r
Kn(A/mr) = 0, whence the result follows.

3.2 Proof of theorem 2.13

We would like to extend theorem 2.12 to the non-reduced case by taking advantage of the Goodwillie
isomorphism and then studying the relative cyclic homology of nilpotent ideals. Unfortunately, at
present we can only handle truncated polynomial rings.

Lemma 3.12. Let A be a one-dimensional, reduced local ring, essentially of finite type over a field
of characteristic zero, and let C = A[t]/〈te〉. Then

H̃Cn(C)→ H̃Cn(C/mrC)⊕ H̃Cn(FracC)

is injective for r � 0, where the cyclic homologies are taken with respect to any fixed subfield
k ⊆ A.

Proof. For a moment let R = R0 ⊕R1 ⊕ · · · be a graded k-algebra, and A an arbitrary k-algebra.
Combining C. Kassel’s formula [17] for the cyclic homology of a graded algebra with Goodwillie’s
result [11] that the reduced SBI sequence splits into short exact sequences, one can deduce that

H̃Cn(R⊗k A) ∼=
⊕
p+q=n

H̃Cp(R)⊗k HHq(A)
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For details, see [8], where C. Weibel, L. Reid, and S. Geller also point out that this decomposition
is not natural, but depends on choices of splitting of the short exact sequences of k-modules

0→ H̃Cn−1(R)→ H̃Hn(R)→ H̃Cn(R)→ 0.

Without these choices of splitting, one has only a decreasing filtration on H̃Cn(R⊗k A) for which

grp H̃Cn(R⊗k A) ∼= H̃Cp(R)⊗k HHn−p(A).

Put R = k[t]/〈te〉 and let A be as in the statement of the proposition. Then according to

one of Krishna’s Artin-Rees results [21, Corol. 6.2(iii)], HHq(A) → HHq(A/m
r) ⊕ HHq(Ã) is

injective for r � 0. Since Ã is smooth over k, we have HHq(Ã) = Ωq
Ã/k

, which embeds into

HHq(FracA) = ΩqFracA/k = Ωq
Ã/k
⊗Ã FracA.

So, let r be large enough so that HHq(A) → HHq(A/m
r) ⊕ HHq(FracA) is injective for

q = 0, . . . , n. Applying the Kassel-Goodwillie decomposition to the rings

C = A[t]/〈te〉, FracC = (FracA)[t]/〈te〉, C/mrAC = (A/mrA)[t]/〈te〉,

we deduce that

H̃Cn(C)→ H̃Cn(C/mrAC)⊕ H̃Cn(FracC)

is injective for r � 0. To obtain the exact statement of the proposition, just notice that mrAC ⊆
mr+eC for all r ≥ 1.

Theorem 2.13 easily follows:

Proof of theorem 2.13. Exactly as in the proof of theorem 2.12 we may reduce to the case when A
is the Henselization of a one-dimensional, reduced local ring which is essentially of finite type over
a field of characteristic 0.

For any ring R containing Q the Goodwillie isomorphism implies there is a split exact sequence

0→ H̃Cn−1(R[t]/〈te〉)→ Kn(R[t]/〈te〉)→ Kn(R)→ 0

The proof is completed by realising A as a filtered direct limit of rings A′ to which the previous
lemma applies (just as in the proof of theorem 3.10), passing to the limit, and of course using
theorem 2.12.

Remark 3.13. More generally, the proof presented above shows that conjecture 1’ is true whenever
A = A0 ⊗Q R, where A0 is a one-dimensional, reduced, excellent, Henselian local rings containing
Q, and R is a graded Artinian Q-algebra with R0 = Q.

4 Some examples of and miscellaneous results

concerning completed K-groups

In this section we give some examples of and structural results on K̂n(A) and K̂n(FracA) in two
important cases: rings with finite residue field, and Q-algebras.
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Finite residue field

We begin by focussing on the case when A has a finite residue field. We first show K̂n(A) is a
profinite group, then offer two homotopy-theoretic interpretations of it, and then explicitly consider
the case of a complete discrete valuation ring.

Proposition 4.1. Let A be a one-dimensional, Noetherian local ring, with finite residue field.
Then Kn(A/mr) is finite for all n, r ≥ 1, and so K̂n(A) is a profinite group.

Proof. Indeed, it seems to be a folklore result that the K-groups of a finite ring R are themselves
finite; I am grateful to V. Angeltveit for explaining the argument to me. Firstly, Bass stability
implies that, for any fixed n, Hn(BGL(R)+,Z) = Hn(GL(R),Z) = Hn(GLm(R),Z) for m suffi-
ciently large, and Hn(GLm(R),Z) is finite for n ≥ 1 since GLm(R) is a finite group. Thus all the
integral homology groups of degree ≥ 1 of the K-theory space BGL(R)+ are finite.

Since BGL(R)+ is an infinite loop space, its π1 acts trivially on its πn for all n ≥ 1, so the
theory of Serre classes tells us that

πn(BGL(R)+) is finite for all n ≥ 1⇐⇒ Hn(BGL(R)+,Z) is finite for all n ≥ 1,

completing the proof.

The proposition has some important homotopy-theoretic consequences, continuing the theme
of remark 2.4:

Corollary 4.2. Let A be a one-dimensional, Noetherian local ring with finite residue field. Then
Ktop
n (A)→ Kn(A) is an isomorphism for each n ≥ 0.

If moreover A has characteristic zero and is complete, then

Kn(A) ∼= πn(K(A)̂)

for n > 0, where K(A)̂ denotes the profinite completion of the K-theory spectrum of A.

Proof. The first claim was already explained in remark 2.4.
For the second claim, Cohen structure theory implies that A is a finite Zp-algebra, and so [32, 33]

implies that the natural map K(A) → Ktop(A) induces a weak equivalence K(A)̂ ∼→ Ktop(A)̂
(the argument can be found in the appendix of [14]). But profinite completion commutes with
homotopy limits, and so

Ktop(A)̂ = holim
r

(
K(A/mr)̂) (∗)

= holim
r

K(A/mr),

where the final equality follows from the previous lemma: K(A/mr) has finite higher homotopy
groups, hence is its own profinite completion, at least if we ignore π0 (and thus (∗) is actually only
an equality if we restrict to a connected component of each side). Hence πn(K(A)̂) = πn(Ktop(A))
for n > 0, whence the first claim now completes the proof.

Next we consider an important example, namely rings of integers of local fields:

Proposition 4.3. Let O be a complete discrete valuation ring of mixed characteristic, with finite
residue field of characteristic p. Let µ be the group of roots of unity inside O, and µp∞ those of
p-power order. Then the Hilbert symbol induces isomorphisms

K̂2(O)
'→ µp∞ , K̂2(FracO)

'→ µ.
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Proof. Let F = FracO. Moore’s theorem [25] says that the Hilbert symbol H : K2(F ) → µ is an
isomorphism, that its kernel Λ is an uncountable divisible group (even uniquely divisible, by [24])

contained inside K2(O), and that K2(O)/Λ
'→ µp∞ . Set m = #µ.

According to [31], the kernel of K2(O)→ K2(O/mr) is generated by Steinberg symbols of the
form {u, 1 + a}, where u ∈ O× and a ∈ mr. Consequently, if we pick r large enough so that
1 + mr ⊆ (O×)m, then the Hilbert symbol factors through K2(O/mr). Moreover, K2 of a local
ring is entirely symbolic (again by [31]), so K2(O/mr) is finite (which we saw in the previous
proposition anyway) and K2(O) → K2(O/mr) is surjective. This proves that the Hilbert symbol
induces an isomorphism

H : K2(O/mr) '→ µp∞

for all r � 0. In conclusion, K̂2(O) ∼= µp∞ .

The isomorphism for K̂2(FracO) follows from its original definition as a pushout and the exact
sequence 0→ K2(O)→ K2(F )→ µ/µp∞ → 0.

Remark 4.4. If O is as in the previous proposition, then J. Wagoner [38] showed that K̂n(O) ∼=
Kn(O/m)⊕ Vn, where Vn is a{

finite Zp-module if n is even,

finitely generated Zp-module of rank |F : Qp| if n is odd.

We finish this finite residue field section by showing that K̂2 is the p-adic completion of K2:

Proposition 4.5. Let A be a one-dimensional, Noetherian local ring of characteristic zero, with
finite residue field of characteristic p. Then

K̂2(A) ∼= lim←−
r≥1

K2(A)/prK2(A)

Proof. As in the proof of the previous proposition, K2(A)→ K2(A/mr) is surjective; so K̂2(A) =
lim←−rK2(A)/Er, where Er = Ker(K2(A) → K2(A/mr)). Also as in the proof of the previous

proposition, Er is generated by Steinberg symbols of the form {u, 1+a} where u ∈ A× and a ∈ mr.
Given s > 0 there exists r � 0 such that mr ⊆ psA. Hensel’s lemma implies that 1 + psA ⊆

(1 + pA)p
s

, so we see from the description of Er that Er ⊆ psK2(A).
Conversely, for any r > 0 we may pick s � 0 such that (1 + m)p

s ⊆ 1 + mr. Therefore
psE1 ⊆ Er. But K2 of a finite field is trivial, so E1 = K2(A).

We have proved that the chains of subgroups {Er}r and {psK2(A)}s are commensurable,
completing the proof.

Residue characteristic zero

Now we turn to Q-algebras. Our result, based on the computations in the next section, completely
describes completed K-groups of complete discrete valuation rings of characteristic zero; its most
striking aspect is that the kernel of K̂n(A)→ Kn(k) is entirely symbolic:

Proposition 4.6. Let A be a complete discrete valuation ring with characteristic zero residue field
k; then there is a natural split short exact sequence

0 −→ Ω̂n−1A,m/dΩ̂n−2A,m −→ K̂n(A) −→ Kn(k)→ 0,

where Ω̂∗A,m := Ker(lim←−r Ω∗A/mr −→ Ω∗k).
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Proof. There is certainly a split short exact sequence

0→ lim←−
r

Kn(A/mr,m/mr)→ K̂n(A)→ Kn(k)→ 0, (†)

and corollary 3.3 implies that lim←−rKn(A/mr,m/mr) = lim←−rK
(n)
n (A/mr,m/mr). By the Goodwillie

isomorphism (which respect the Adams/Hodge decompositions by [3]),

K(n)
n (A/mr,m/mr) ∼= HC

(n−1)
n−1 (A/mr,m/mr).

But for any (commutative, unital) ring R, the standard calculation of the top degree part of cyclic

homology (e.g. [23, Thm. 4.6.8]) says that HC
(n−1)
n−1 (R) = Ωn−1R /dΩn−2R . Therefore the kernel in

(†) is

lim←−
r

Ker(Ωn−1A/mr/dΩn−2A/mr −→ Ωn−1k /dΩn−2k )

and the rest of the proof simply requires chasing some projective systems.

We will use the standard notation that if J ⊆ R is an ideal in a ring R, then ΩmR,J := Ker(ΩmR →
ΩmR/J) for m ≥ 0. It is easy to see that if R→ R/J splits, then

Ker(ΩmR /dΩm−1R −→ Ωmk /dΩmk ) = ΩmR,J/dΩm−1R,J

So the kernel in (†) is lim←−r Ωn−1A/mr,m/mr/dΩn−2A/mr,m/mr . Noticing that ΩmA/mr+1,m/mr+1 → ΩmA/mr,m/mr

is surjective for any m ≥ 0, the projective systems

0→ ΩmA/mr,m/mr → ΩmA/mr → Ωmk → 0 (r ≥ 1)

and

0→ dΩm−1A/mr,m/mr → ΩmA/mr,m/mr → ΩmA/mr,m/mr/dΩm−1A/mr,m/mr → 0 (r ≥ 1)

both satisfy the Mittag-Leffler condition. Taking the limits completes the proof.

Remark 4.7. When A is singular, we described the non symbolic part of the kernel of K̂n(A)→
Kn(k) in corollary 3.9.

Part II: Global theory

5 The Zariski cohomology of K-theory

We now begin the second part of the paper, on global theory using K-theoretic adèles, first in
the Zariski topology. We begin by describing incomplete adèles for any abelian sheaf on a one-
dimensional, Noetherian scheme, before specialising to sheafifed K-theory and showing that these
adèle groups fit into a long exact Mayer-Vietoris sequence which encodes both localisation and
descent for K-theory.
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5.1 Incomplete adeles for curves

Let X be a one-dimensional, Noetherian scheme. We will explain the natural ‘reparations’ (or
‘incomplete adelic’) resolution of any sheaf of abelian groups on X. It is simple, though not widely
used. Xi denotes the codimension i points of X.

Firstly, to fix notation, if f : W → X is any morphism of schemes, then we denote by f∗ and
f∗ the adjoint pair of functors on sheaves:

Ab(W )

f∗
))
Ab(X)

f∗

ii

Secondly, define a functor2

A1 : Ab(X)→ Ab(X), F 7→
∏
x∈X1

ix∗i
∗
x(F),

where ix : Spec k(x) ↪→ X is the natural inclusion; in other words, the sections of A1(F) over an
open set U ⊆ X are

A1(F)(U) =
∏
x∈U1

Fx.

There are three important properties to notice about A1:

(i) It is an exact, additive functor.

(ii) It is coaugmented: there is always a natural morphism F → A1(F), which is an isomorphism
whenever F vanishes on a dense open subset of X.

(iii) A1(F) is flasque.

Now let F be a fixed sheaf of abelian groups on X. For any dense open subset V ⊆ X, set

FV = jV ∗j
∗
V F ,

where jV : V ↪→ X is the natural embedding. As always there is a natural morphism F → FV ,
and the kernel and cokernel (call them A and B respectively) are supported on X \ V :

0 −→ A −→ F −→ FV −→ B −→ 0.

Applying to this sequence the functor A1 and using properties (i) and (ii), we obtain a commutative
diagram with exact rows:

0 // A //

∼=
��

F //

��

FV //

��

B //

∼=
��

0

0 // A1(A) // A1(F) // A1(FV ) // A1(B) // 0

Therefore the central square of this diagram is cartesian and co-cartesian in the category Ab(X);
it remains such after taking the limit over V , and so, in conclusion:

2From the point of view of higher adèles, the more natural notation for this functor is AX(1, ·).
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Lemma 5.1. For any F ∈ Ab(X), the following diagram is bicartesian:

F //

��

lim−→V
FV

��
A1(F) // lim−→V

A1(FV ),

where V runs over all dense open subsets of X.
Moreover, apart from F , the remaining three corners are flasque shaves.

Proof. All that is left to prove is that lim−→V
FV is flasque; in fact, we will show that

lim−→
V

FV =
∏
y∈X0

iy∗i
∗
y(F).

It is enough to check this on stalks of points in X1.
Fix a dense open subset V , and let x ∈ X \ V . Then standard (f∗, f

∗)-functoriality tells us
that

(FV )x = f∗xF (D◦x),

where D◦x = SpecOX,x \ {x} is the punctured disk around x and fx : D◦x → X is the natural
morphism. But D◦x is a zero dimensional scheme with points equal to those y ∈ X0 such that
x ∈ {y}; thus

(FV )x =
∏
y∈X0

s.t. y>x

Fy =
∏
y∈X0

iy∗i
∗
y(F)x, (†)

as required. Here we have written y > x to mean that x is a strict specialisation of y.

In order to avoid too many messy expressions like (†), it is essential to introduce restricted
product notation:

Definition 5.2 (Restricted product notation). Let G be a presheaf of abelian groups on X. If
x ∈ X1, we will write

G◦x := f∗xG (D×x ) =
∏
y∈X0

s.t. y>x

Gy

for the sections of G on the punctured spectrum D◦x, where fx : D◦x → X is as in the previous
lemma. Next we introduce typical adelic ‘restricted product’ notation:

∏′

x∈X1

G◦x := lim−→
V⊆X

dense open

 ∏
x∈V 1

Gx ×
∏

x∈X\V

G◦x

 .

More generally, suppose that we are simply given a morphism of abelian groups Ax → A◦x for
each x ∈ X1; then we may write

∏′

x∈X1

A◦x := lim−→
V⊆X

dense open

 ∏
x∈V 1

Ax ×
∏

x∈X\V

A◦x

 .
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Example 5.3. (i) If G = OX then G◦x = FracOX,x. More generally, if G is a coherent OX
module then Gx = Mx ⊗OX,x

FracOX,x.

(ii) If X is the spectrum of the ring of integers of a number field, or a smooth projective curve
over a final field, then∏′

x∈X1

O◦X,x =
∏′

x∈X1

FracOX,x = usual incomplete ring of (finite) adèles.

(iii) The previous lemma implies that the global sections of lim−→V
A1(FV ) are

∏′
x∈X1 F◦x .

In conclusion we reach the main ‘theorem’ of one-dimensional adèles:

Proposition 5.4. Let F be an abelian sheaf on X. Then there are natural isomorphisms

H∗

0→
∏
x∈X1

Fx ⊕
∏
y∈X0

Fy →
∏′

x∈X1

F◦x → 0

 ∼= H∗(X,F).

Proof. This follows by taking cohomology in lemma 5.1.

5.2 The Zariski long exact sequence for K-theory

X continues to be a one-dimensional, Noetherian scheme, which we assume further is quasi-
separated (i.e., the diagonal map X → X ×Z X is quasi-compact). In this section we extend
some arguments from [42] to show how the localisation theorem for K-theory yields a long exact
Mayer-Vietoris sequence on X, and we then compare it to the short exact sequences arising from
proposition 5.4 with F = Kn (sheafification of the Kn presheaf in the Zariski topology).

In the Cohen-Macaulay case, our corollary 5.8 is precisely the main theorem of §2 of [42].
Weibel’s proof used ‘truncations’ of K-theoretic adèles, such as in line (‡) in the next proof; he
remarked that natural flasque resolution of Kn would provide an easier proof of his results, and
one goal of the next proposition is to show that our adelic resolution does exactly that.

Remark 5.5. At the risk of repeating remark 2.3, we comment that we have chosen to work with
arbitrarily singular X and therefore need the localisation theorem of Thomason-Trobaugh; if we
were to restrict to Cohen-Macaualy X, the original Quillen-Grayson localisation theorem would
suffice.

K(X) means the K-theory spectrum of the complicial biWaldhausen category Perf(X) of per-
fect complexes on X of globally finite Tor-amplitude. See the appendix for more details.

Proposition 5.6. Suppose X is a one-dimensional, quasi-separated, Noetherian scheme; then
there is a long-exact Mayer-Vietoris sequence

· · · → Kn(X)→
∏
x∈X1

Kn(OX,x)⊕
∏
y∈X0

Kn(OX,y)→
∏′

x∈X1

Kn(FracOX,x)→ · · · ,

where we use restricted product notation (definition 5.2) for the data Kn(OX,x)→ Kn(FracOX,x),
where x ∈ X1.
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Proof. Let V be a dense open subset of X. Then Thomason-Trobaugh’s localisation and excision
theorems, and passing to the limit, yield a fibre sequence of K-theory spectra

K(X on X \ V )→ K(X)→ K(V ) (†)

and a homotopy equivalence

K(X on X \ V )
∼−→

∏
x∈X\V

K(SpecOX,x on x)

For each x ∈ X \ V we also have the local fibre sequence

K(SpecOX,x on x)→ K(OX,x)→ K(FracOX,x).

Taking the product over all x ∈ X \ V and comparing with fibre sequence (†) reveals that

K(X) //

��

K(V )

��∏
x∈X\V K(OX,x) // ∏

x∈X\V K(FracOX,x)

is a homotopy cartesian square of spectra, so that it yields a long-exact Mayer-Vietoris sequence
of the homotopy groups:

· · · → Kn(X)→
∏

x∈X\V

Kn(OX,x)⊕Kn(V )→
∏

x∈X\V

Kn(FracOX,x)→ · · · (‡)

Evidently this remains exact if we artificially add a factor of
∏
x∈V 1 Kn(OX,x) to consecutive terms:

· · · → Kn(X)→
∏
x∈X1

Kn(OX,x)⊕Kn(V )→
∏
x∈V 1

Kn(OX,x)×
∏

x∈X\V

Kn(FracOX,x)→ · · ·

The proof is completed by taking the limit over dense opens V .

From the proposition we obtain the following local formulae for the cohomology groupsHi(X,Kn):

Corollary 5.7. Let X be as in the proposition; then H0(XZar,Kn) and H1(XZar,Kn+1) are equal
to the image and kernel, respectively, of the diagonal map

Kn(X)→
∏
x∈X1

Kn(OX,x)⊕
∏
y∈X0

Kn(OX,y).

Proof. Proposition 5.4 for the sheaf F = Kn gives us an exact sequence

0→ H0(XZar,Kn)→
∏
x∈X1

Kn(OX,x)⊕
∏
y∈X0

Kn(OX,y)→
∏′

x∈X1

Kn(FracOX,x)→ H1(XZar,Kn)→ 0.

This gives us the formula for H0. For H1, combine this exact sequence with the long exact sequence
of the previous proposition.

From the previous corollary we obtain the descent spectral sequence on X for K-theory:

Corollary 5.8. There are natural exact sequences

0→ H1(XZar,Kn+1)→ Kn(X)→ H0(XZar,Kn)→ 0.

Proof. This is immediate from the previous corollary.
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5.3 Relation to descent

X continues to be a one-dimensional, quasi-separated, Noetherian scheme. Let E be a presheaf of
spectra on XZar, with associated abelian presheaves En = πn(E); let En be the sheafification of
En. We say that E satisfies descent when it transforms cartesian squares

U ∪ V //

��

U

��
V // U ∩ V

of open subsets of X to homotopy cartesian squares of spectra, which is (more or less) equivalent
to the existence of a descent spectral sequence

Ep,q2 = Hp(X, Eq) =⇒ Ep−q(X).

Since the Zariski site of X has cohomological dimension one, this is the assertion that there is a
natural exact sequence

0→ H1(X, En+1)→ En(X)→ H0(X, En)→ 0.

This yields a reinterpretation of the calculations of the previous subsection:

Proposition 5.9. Let X be a one-dimensional, Noetherian scheme, and let E be a presheaf of
spectra on X. Then the following are equivalent:

(i) E satisfies descent (more precisely, there is a short exact sequence as immediately above);

(ii) There exists a long exact Mayer-Vietoris sequence

· · · → En(X)→
∏
x∈X1

En,x ⊕
∏
y∈X0

En,y →
∏′

x∈X1

E◦n,x → · · ·

as in proposition 5.6.

(iii) For n ≥ 0, the cohomology groups H0(XZar, En) and H1(XZar, En+1) are equal to the image
and kernel, respectively, of the diagonal map

En(X)→
∏
x∈X1

En,x ⊕
∏
y∈X0

En,y.

Proof. Proposition 5.4 tells us that there is an exact sequence

0→ H0(X, En)→
∏
x∈X1

En,x ⊕
∏
y∈X0

En,y →
∏′

x∈X1

E◦n,x → H1(X, En)→ 0

for any n ≥ 0. The equivalence of conditions (i)–(iii) follows in an elementary way from this by
splicing and unravelling exact sequences; we only sketch the details, abbreviating notation a little
to save space:
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(i)⇒(ii) Assuming (i), we have a commutative diagram with exact rows:

// H1(En+1) //

��

0 //

��

H0(En) //

��

∏
xEn,x ⊕

∏
y En,y

//

��

∏′
xE
◦
n,x

//

��

H1(En) //

��

0 //

��

H0(En−1) //

��
// H1(En+1) // En(X) // H0(En) // 0 // 0 // H1(En) // En−1(X) // H0(En−1) //

The exact sequence (ii) follows by a standard Mayer-Vietoris type diagram chase.
(ii)⇒(iii) follows exactly as in corollary 5.7. (iii)⇒(i) is trivial.

6 The Nisnevich cohomology of K-theory

Now we repeat all the constructions above in the Nisnevich topology; apart from several steps,
the arguments are exactly the same and so we do not linger. Then finally we reach section 6.5,
where it is shown that the arguments can be modified again to give a description of the Nisnevich
cohomology of sheafified K-theory using our completed K-groups from the first part of the paper.
The validity of this condition is dependent on conjecture 1 being satisfied.

X is again a one-dimensional, Noetherian scheme.

6.1 Henselian adeles for curves

Here we describe the Henselian adeles, which provide a functorial resolution for any abelian sheaf
F on XNis.

As before, given a morphism f : W → X, we denote by f∗ and f∗ the adjoint pair of functors
on abelian sheaves, this time in the Nisnevich topology:

Ab(WNis)

f∗
))
Ab(XNis)

f∗

ii
.

Let the functor ANis
1 : Ab(XNis) → Ab(XNis) be defined as before: ANis

1 (F) =
∏
x∈X1 ix∗i

∗
x(F),

where ix : Spec k(x) ↪→ X is the natural map.
Exactly imitating the arguments in the Zariski case shows that we have a bicartesian square of

Nisnevich sheaves

F //

��

∏
y∈X0 iy∗i

∗
y(F)

��

ANis
1 (F) // lim−→V

ANis
1 (FV )

where V runs over all étale opens of X such that X0 ⊆ cd(V/X) (= {x ∈ X : ∃x′ ∈ V s.t. x′ 7→
x and k(x)

'→ k(x′)}), and where FV is defined as in the Zariski case: FV = jV ∗j
∗
V (F), with

jV : V → X being the natural inclusion.
Moreover, note that any étale cover V → X such that X0 ⊆ cd(V/X) may be refined to a

Zariski cover U → X with the same property; i.e., such that U is dense. It then follows from the
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same argument as in the Zariski case that

ANis
1 (FU ) =

∏
x∈U1

Fx ×
∏

x∈X\U

F◦x ,

where F◦x is now the global sections of Fx on the punctured Henselian spectrum SpecOhX,x \ {x}.
Therefore

lim−→
V

ANis
1 (FV ) =

∏′

x∈X1

F◦x .

Example 6.1. If X is the spectrum of the ring of integers of a number field, or a smooth projective
curve over a field, and G = OX (as a Nisnevich sheaf), then G◦x = FracOhX,x and

∏′
x∈X1 FracOX,x

is the usual ring of (finite) Henselian adèles.

Taking cohomology we obtain the analogue of proposition 5.4:

Proposition 6.2. Let F be an abelian sheaf on XNis. Then there are natural isomorphisms

H∗

0→
∏
x∈X1

Fx ⊕
∏
y∈X0

Fy →
∏′

x∈X1

F◦x → 0

 ∼= H∗(XNis,F).

6.2 The Nisnevich long exact sequence for K-theory

Assume further that X is quasi-separated. We showed in proposition 5.6 that there is a natural
long exact Mayer-Vietoris sequence:

· · · → Kn(X)→
∏
x∈X1

Kn(OX,x)⊕
∏
y∈X0

Kn(OX,y)→
∏′

x∈X1

Kn(OX,y)→ · · ·

We now wish to replace the local rings OX,x in this diagram by their Henselizations.
Given x ∈ X1, the homomorphism OX,x → OhX,x is an isomorphism infinitely near the maximal

ideals (in the sense of Thomason-Trobaugh), so it gives rise to a long exact Mayer-Vietoris sequence:

· · · → Kn(OX,x)→ Kn(OhX,x)⊕Kn(FracOX,x)→ Kn(FracOhX,x)→ · · ·

This may be spliced with the long exact sequence immediately above (or the arguments in the
previous section may be repeated verbatim) to give a long exact sequence

· · · → Kn(X)→
∏
x∈X1

Kn(OhX,x)⊕
∏
y∈X0

Kn(OX,y)→
∏′

x∈X1

Kn(FracOhX,x)→ · · ·

We may now easily deduce the Nisnevich analogue of corollary 5.7:

Corollary 6.3. X a one-dimensional, quasi-separated, Noetherian scheme. Then H0(XNis,Kn)
and H1(XNis,Kn+1) are equal to the image and kernel, respectively, of the diagonal map

Kn(X)→
∏
x∈X1

Kn(OhX,x)⊕
∏
y∈X0

Kn(OX,y).

Proof. This follows exactly as it did in the Zariski setting since proposition 6.2 provides us with
exact sequences

0→ H0(XNis,Kn)→
∏
x∈X1

Kn(OhX,x)⊕
∏
y∈X0

Kn(OX,y)→
∏′

x∈X1

Kn(FracOhX,x)→ H1(XNis,Kn)→ 0

and since we just established the Nisnevich analogue of proposition 5.6.
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6.3 Relation to descent

Section 5.3 has an obvious Nisnevich modification.

6.4 Nisnevich cohomology via K-theory of completions

X continues to be a one-dimensional, quasi-separated, Noetherian scheme. Here we explain that
one can always replace Kn(OhX,x) by Kn(ÔX,x) in expressions for the Nisnevich cohomology of
K-theory.

Lemma 6.4. The diagram

∏
x∈X1 Kn(OhX,x)⊕

∏
y∈X0 Kn(OX,y) //

� _

��

∏′
x∈X1 Kn(FracOhX,x)

� _

��∏
x∈X1 Kn(ÔX,x)⊕

∏
y∈X0 Kn(OX,y) // ∏′

x∈X1 Kn(Frac ÔX,x)

is bicartesian with injective vertical arrows.

Proof. Corollary 2.6 shows that if x ∈ X1 then the diagram

Kn(OhX,x) //
� _

��

Kn(FracOhX,x)
� _

��

Kn(ÔX,x) // Kn(Frac ÔX,x)

is bicartesian with injective vertical arrows. For V ⊆ X a dense open, we take
∏
x∈X\V of these

diagrams to obtain a new bicartesian diagram; then apply ×
∏
x∈V 1 Kn(OhX,x) to the top row of

the diagram and ×
∏
x∈V 1 Kn(ÔX,x) to the bottom of the diagram. Finally take lim−→V

.

It follows at once from the lemma that we may replace each OhX,x by ÔX,x in both the long
exact Mayer-Vietoris sequence appearing immediately before the proof of corollary 6.3 and in the
corollary itself:

· · · → Kn(X)→
∏
x∈X1

Kn(ÔX,x)⊕
∏
y∈X0

Kn(OX,y)→
∏′

x∈X1

Kn(Frac ÔX,x)→ · · ·

and

H∗

0→
∏
x∈X1

Kn(ÔX,x)⊕
∏
y∈X0

Kn(OX,y)→
∏′

x∈X1

Kn(Frac ÔX,x)→ 0

 ∼= H∗(XNis,Kn)

Therefore H0(XNis,Kn) and H1(XNis,Kn+1) are equal to the image and kernel, respectively, of
the diagonal map

Kn(X)→
∏
x∈X1

Kn(ÔX,x)⊕
∏
y∈X0

Kn(OX,y).
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6.5 Nisnevich cohomology via completed K-groups

X continues to be a one-dimensional, quasi-separated, Noetherian scheme, but we now assume
further that the completion of OX,x satisfies conjecture 1 for all x ∈ X1 (or, equivalently, that its
Henselization satisfies conjecture 1’). For example, theorem 2.12 implies that X is allowed to be a
reduced curve over a characteristic zero field.

Then the square

Kn(OhX,x) //

��

Kn(FracOhX,x)

��

K̂n(OX,x) // K̂n(FracOX,x)

is bicartesian for each x ∈ X1. The arguments of section 6.4 may then be repeated verbatim (the
injectivity of the vertical arrows in lemma 6.4 was of no importance) to obtain our main theorem
on calculating the cohomology of K-theory adelically:

Theorem 6.5. Let X be a one-dimensional, quasi-separated, Noetherian scheme such that ÔX,x
satisfies conjecture 1 for all x ∈ X1. Then there is a long exact Mayer-Vietoris sequence

· · · → Kn(X)→
∏
x∈X1

K̂n(X)⊕
∏
y∈X0

Kn(OX,y)→
∏′

x∈X1

K̂n(FracOX,x)→ · · ·

and natural isomorphisms

H∗

0→
∏
x∈X1

K̂n(OX,x)⊕
∏
y∈X0

Kn(OX,y)→
∏′

x∈X1

K̂n(FracOX,x)→ 0

 ∼= H∗(XNis,Kn).

Therefore H0(XNis,Kn) and H1(XNis,Kn+1) are equal to the image and kernel, respectively, of
the diagonal map

Kn(X)→
∏
x∈X1

K̂n(OX,x)⊕
∏
y∈X0

Kn(OX,y).

A K-theory and Hochschild/cyclic homology

This appendix summarises the various tools from K-theory and Hochschild/cyclic homology which
are employed in the paper.

A.1 K-theory

K-theory in this paper is in the style of T. Thomason and R. Trobaugh [35]. However, our
manipulations are mostly formulaic and the precise definitions do not matter a great deal; indeed,
apart from the possibility of non-Cohen-Macaulay one-dimensional local rings, ‘classical’ K-theory
would suffice. Therefore this summary is only for the sake of completeness.

If X is a scheme then K(X) denotes the K-theory spectrum of the complicial biWaldhausen
category Perf(X) of perfect complexes on X of globally finite Tor-amplitude, and Kn(X) :=
πn(K(X)). This agrees with the ‘naive’ definition using the category of locally-free coherent OX -
modules as soon as X has an ample family of line bundles (‘divisorial’ in the language of SGA 6
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II 2.2), e.g. quasi-projective over an affine scheme, or regular+separated+Noetherian. We will not
worry about exactness at the K0 end of all our long exact Mayer-Vietoris sequences, and so do not
replace K-theory by non-connective Bass KB-theory.

If Y is a closed subscheme of X, then K(X on Y ) is the K-theory spectrum of the subcate-
gory PerfY (X) of Perf(X) consisting of those complexes which are acyclic on X \ Y . Thomason
and Trobaugh introduce the notion of when a morphism of schemes f : X ′ → X ′ is an ‘iso-
morphism infinitely near’ Y ⊆ X; when this is satisfied, the resulting map f∗ : K(X on Y ) →
K(X ′ on f−1(Y )) is an equivalence. Most importantly for us, if A is a Noetherian ring and I ⊆ A,
then

A→ the completion or Henselization of A at I

are isomorphisms infinitely near I [35, 3.19.2].

A.2 Karoubi-Villamayor K-theory

Given a ring R, let R[∆•] be the usual simplicial ring, which in degree n is equal to

R[T0, . . . , Tn]/〈
∑
i

Ti = 1〉.

Then GL(R[∆•]) is a simplicial group and the Karoubi-Villamayor K-theory of R is defined by

KVn(R) = πn(BGL(R[∆•]). (n ≥ 1)

There are natural maps Kn(R) → KVn(R), for n ≥ 1, arising as edge maps in a first quadrant
spectral sequence

E1
pq = Kq(R[∆p])⇒ KVp+q(R), (p ≥ 0, q ≥ 1)

called the Andersen spectral sequence.

In particular, if R is K1-regular, i.e. K1(R)
'→ K1(R[T1])

'→ K1(R[T1, T2]
'→ · · · , then we

obtain a short exact sequence

NK2(R)→ K2(R)→ KV2(R)→ 0,

where NK2(R) = coker(K2(R)→ K2(R[T ])).

KV -theory has much better excision type properties than usual K-theory. A GL-fibration is a
homomorphism of rings f : R→ R′ such that

GL(R[t1, . . . , tn])×GL(R′)→ GL(R′[t1, . . . , tn])

is surjective for all n ≥ 1. If f is a GL-fibration then it is surjective, and the converse is true
if R′ is regular. Suppose that i : S → R is a homomorphism of rings and I ⊆ S is an ideal of
R mapped isomorphically onto an ideal of R; if R → R/i(I) is a GL-fibration then there is a
long-exact Mayer-Vietories sequence

· · · → KVn(S)→ KVn(S/I)⊕KVn(R)→ KVn(R/i(I))→ · · ·
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A.3 Hochschild/cyclic homology

Let k be a commutative ring and R a k-algebra (again, for us this will always be commutative and
unital). Define a simplicial R-algebra C•(R) by

Cn(R) = R⊗k · · · ⊗k R︸ ︷︷ ︸
n+ 1 copies

di(a0 ⊗ · · · ⊗ an) =

{
a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an (i = 0, . . . , n− 1)

ana0 ⊗ · · · ⊗ an−1 (i = n)

si(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an (i = 0, . . . , n)

From now on we write C•(R) for the usual complex of R-modules associated to the simplicial
R-algebra C•(R). The Hochschild homology of R is the homology of this complex: HHn(R) :=
Hn(C•(R)).

The cyclic group Z/(n+ 1)Z naturally acts on Cn(R) by permutation, and we let

Cλn(R) = Cn(R)/(1− tn)Cn(R) (tn a generator of Z/(n+ 1)Z)

denote the coinvariants of the action. The differential on C•(R) descends to give Connes’ complex
Cλ• (R). Assuming that Q ⊆ R (which will always be the case for us), the cyclic homology of R
may be defined to be the homology of Connes’ complex: HCn(R) := Hn(Cλ• (R)).

If R = R0⊕R1⊕· · · is a graded k-algebra, then we write H̃Hn(R) and H̃Cn(R) for the reduced
homology groups HHn(R)/HHn(R0) and HCn(R)/HCn(R0).

B The K-theory of seminormal local rings

The purpose of this appendix is to collect various classical results on seminormal local rings and
their K-theory [5, 30, 40, 8].

B.1 Seminormal local rings

Let A be a one-dimensional, reduced ring whose normalisation Ã is a finitely generated A-module
(this is automatic is A is excellent, which we will tacitly assume from now on). Then A is said to
be seminormal when the following equivalent conditions hold:

(i) Pic(A)→ Pic(A[T ]) is an isomorphism.

(ii) The conductor ideal c ⊆ A is a radical ideal in Ã; i.e. Ã/c is a reduced ring (hence a finite
product of fields since it is Artinian).

(iii) If f ∈ A satisfies f2, f3 ∈ A, then f ∈ A.

Put
A+ = {f ∈ Ã : f2 and f3 are in A}.

Then A+ is the smallest seminormal subring of Ã containing A, and it is called the seminormalisa-
tion of A. Each maximal ideal of A sits under a unique maximal ideal of A+; i.e. SpecA→ SpecA+

is a bijection.
Now suppose A (still one-dimensional, reduced, and excellent) is moreover local with residue

field k. Let m1, . . .mn be the distinct maximal ideals of Ã, and let M =
⋂n
i=1 m1 be its Jacobson
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radical. Then clearly A is seminormal if and only if M coincides with the maximal ideal of A. In
the local case, the seminormalisation can be explicty described:

Lemma B.1. Let A be a one-dimensional, excellent, reduced local ring with residue field k. Let
A0 be the set of those f ∈ Ã satisfying the following:

(i) For every maximal ideal m of Ã, f mod m lies in k.

(ii) The value of f mod m does not depend on which maximal ideal m was chosen.

Then A0 is the seminormalisation of A.

Proof. First notice that A ⊆ A0. Next let f ∈ Ã; it is easy to see that if f2 and f3 both satisfy (i)
and (ii), then so does f . Therefore A0 is seminormal; i.e. A+ ⊆ A0.

Finally, notice that A0 is local with residue field k: its maximal ideal is M, the Jacobson
radical of Ã. Let f ∈ A0; we will show that f ∈ A+. We mentioned above that the maximal
ideal of A+ equals M, so if f ∈M then there is nothing more to show. Else f is a unit in A0; as
A0/M = k, there is α ∈ A× such that αf ∈ 1 + M. Again, since M ⊂ A+, it follows that f ∈ A+;
i.e. A0 ⊆ A+.

Remark B.2. Let A be as in the lemma, and suppose it is seminormal; suppose further that Ã
happens also to be local. Then the maximal ideal of Ã equals the maximal ideal of A and so the
following are equivalent:

(i) k(A) = k(Ã);

(ii) A is normal.

An example to have in mind is A = k + tK[[t]], where K/k is a finite extension of fields. Then A

is seminormal with integral closure Ã = K[[t]]; the residue fields are k(A) = k and k(Ã) = K.

Suppose that A is as in the lemma. Regardless of seminormality, the minimal prime ideals {q}
of Â are in bijective correspondence with the maximal ideals {m} of Ã via

mi ←→ q = Ker〈Â→ (̂Ã)m〉.

See, e.g., [7, Thm. 6.5]. For clarity, write C = Â, a one-dimensional, reduced, complete local ring,
which is seminormal if and only if A is. Let q1, . . . , qn be the minimal prime ideals of C and
m1, . . . ,mn be the corresponding maximal ideals of C̃ =

∏
i C̃mi

(each C̃mi
is a complete discrete

valuation ring and is the normalisation of C/qi). Then we have a diagram of inclusions

C �
� //
� _

��

C̃

∏
i C/qi

� � // ∏
i C̃mi

and, by the previous lemma,

C+ = {(f1, . . . , fn) ∈ C̃ : f1 mod m1 = · · · = fn mod mn ∈ k}.
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Lemma B.3. Maintain notation from the previous paragraph, and suppose C is seminormal. For
i = 1, . . . , n, set Ii =

⋂
j 6=i qj. Then I1 + · · ·+ In = mC and the sum is direct.

In particular, if C contains a coefficient field k, then C ∼= k⊕ I1 ⊕ · · · ⊕ Im and k+ Ii ∼= C/qi.

Proof. The sum is direct because, for any i,

Ii ∩
∑
j 6=i

Ij ⊆
⋂
j

qj = {0}.

By the diagram just before the lemma, any element in the maximal ideal of C = C+ can be written
f1 + · · ·+ fn where each fi is zero in C/qj for j 6= i; i.e. fi ∈ Ii, as required.

The claims in the equal-characteristic case follow at once.

With C as in the lemma, it is easy to see that each C/qi is also seminormal. Since C̃/qi = C̃mi
,

we may apply the previous remark to deduce that C/qi is a complete discrete valuation ring if and

only if C̃/mi = k.

B.2 Calculations in K-theory related to seminormal rings

Suppose that A ⊆ B is an inclusion of rings, and that I ⊆ A is an ideal of B contained inside A,
so that

A //

��

B

��
A/I // B/I

is Cartesian, as a square of abelian groups. Suppose further that k := A/I, K := B/I, and B are
regular rings.

It is essential for what is to follow to observe that these assumptions remain valid if we replace
A by A[X1, . . . , Xn]; B by B[X1, . . . , Xn]; k by k[X1, . . . , Xn]; and K by K[X1, . . . , Xn].

Since B → K is a surjection to a regular ring, it is a GL-filbration and therefore the ideal I

satisfies excision for KV -theory with respect to A and B; i.e. KV∗(A, I)
'→ KV∗(B, I). But also,

B and K are regular, so K∗(B, I)
'→ KV∗(B, I). In conclusion,

KV∗(A, I)
'→ K∗(B, I),

and we have a long exact sequence

· · · → K∗(B, I)→ KV∗(A)→ K∗(k)→ · · ·

Lemma B.4 ([40] [36]). Assume that Ki(A) → Ki(k) is surjective for i = 1, 2. Then A is
K1-regular if and only if Ω1

K/k = 0.

Proof. First notice that A is K1 regular if and only if K1(A) → KV1(A) is an isomorphism: ‘if’
follows from the homotopy invariance of Karoubi-Villimayor K-theory, while ‘only if’ follows from
examining the Anderson spectral sequence.
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Secondly, note that our surjectivity assumption clearly implies that the map KVi(A) →
KVi(k) = Ki(k) is also surjective for i = 1, 2. The long exact sequence for relative K-theory
and the long exact sequence just before the lemma therefore break into short exact sequences:

0 // K1(A, I)

��

// K1(A)

��

// K1(k)

��

// 0

0 // K1(B, I) // KV1(A) // K1(k) // 0

(†)

So, K1(A)→ KV1(A) is an isomorphism if and only if K1(A, I)→ K1(B, I) is an isomorphism.
According to Weibel-Geller [10], there is a natural exact sequence

K2(B, I)→ Ω1
B/A ⊗B I/I

2 → K1(A, I)→ K1(B, I)→ 0,

so if Ω1
B/A ⊗B I/I2 = 0 then we have shown K1(A, I) → K1(B, I) is an isomorphism, i.e. A is

K1-regular. We will now prove the converse of this statement.
Assume A is K1-regular. Then K1(A, I)→ K1(A[X], I[X]) is an isomorphism for any number

of variables X = X1, . . . , Xm. So, comparing the Weibel-Geller sequences for A,B and A[X],
B[X], we have

K2(B, I) //

∼=
��

Ω1
B/A ⊗B I/I

2 //

��

K1(A, I) //

∼=
��

K1(B, I)

∼=
��

K2(B[X], I[X]) // Ω1
B[X]/A[X] ⊗B[X] I[X]/I[X]2 // K1(A[X], I[X]) // K1(B[X], I[X])

where the left and right-most vertical arrows are isomorphisms due to regularity assumptions.
A diagram chase reveals that the remaining vertical arrow, between the differential forms, is
surjective; but this arrow can be rewritten as

Ω1
B/A ⊗B I/I

2 → (Ω1
B/A ⊗B I/I

2)⊗K K[X].

Clearly this is surjective if and only if Ω1
B/A ⊗B I/I

2 = 0.

This completes the proof of our claim that A is K1-regular if and only if Ω1
B/A ⊗B I/I

2 = 0.

To finish, observe that because B and B/I are regular, the morphism SpecB/I → SpecB is
automatically a regular intersection and thus I/I2 is a locally free K-module. So the vanishing of
Ω1
B/A ⊗B I/I

2 = Ω1
K/k ⊗K I/I2 is equivalent to that of Ω1

K/k.

If A is K1-regular then examination of the Andersen spectral sequence reveals that NK2(A)→
nilK2(A) (:= Ker(K2(A)→ KV2(A))) and K2(A)→ KV2(A) are both surjective, whence there is
a short exact sequence

NK2(A)→ K2(A)→ KV2(A)→ 0

Corollary B.5. Let A be a one-dimensional, seminormal local ring, with residue field k. Then A
is K1 regular if and only if each residue field of Ã is a separable extension of k.

Proof. Set B = Ã and I = mA. Then the data I ⊆ A ⊆ B satisfy all the conditions above;
moreover K1(A) = A× → K1(k) = A× is surjective, and so K2(A) → K2(k) is also surjective, by
appealing to the fact that K2(k) is generated by Steinberg symbols.

Therefore we may apply the previous lemma, from which the result follows.
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A useful tool for describing K2 of one-dimensional, seminormal local rings, and other ‘excision-
like’ examples, is the following theorem of R. Dennis and M. Krusemeyer [6, Prop. 2.10 & Thm. 3.1]:

Theorem B.6. Let A be a ring containing a subring k and ideals I1, . . . , Im such that A ∼=
k ⊕ I1 ⊕ · · · ⊕ Im as abelian groups. Then

K2(A) ∼= K2(k)⊕
n⊕
i=1

Li ⊕
⊕
i<j

(Ii/I
2
i ⊗k Ij/I2j ),

where Li := Ker(K2(k + Ii)→ K2(k)).

We will need a variation of this theorem for Karoubi-Villameyor K-theory. Suppose that
A = k⊕ I1 ⊕ · · · ⊕ Im is as in the lemma, and suppose further that each ring k+ Ii is regular. We
claim that

KV∗(A) ∼= KV∗(k)⊕
m⊕
i=1

KV∗(k + Ii, Ii).

By an obvious induction it is enough to treat the case m = 2: Then

KV∗(A) = KV∗(k + I1)⊕KV∗(A, I2)

= KV∗(k + I1)⊕KV∗(k + I2, I2)

= KV∗(k)⊕KV∗(k + I1, I1)⊕KV∗(k + I2, I2),

where the only non-trivial equality is the second, which follows from applying excision to I2 ⊆
k + I2 ⊆ A (note that A → A/I2 is a GL-fibration since k + I1 is regular). This completes the
proof of the claim.
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